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Oscillation theorems for even order
half-linear neutral differential equation
with continuous deviating arguments

Zhang Jing1, 3, Jia Peipei2

Abstract. In this paper we investigate a class of even order half-linear neutral differential
equation with continuous deviating arguments. By using the generalized Riccati technique and the
integral averaging technique, we give some oscillatory criteria for the equation.
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1. Introduction

The study of oscillatory and asymptotic behavior of the solutions of even order
neutral differential equations, besides its theoretical interest, is important from the
viewpoint of applications. Some results concerning the oscillation and asymptotic
behavior of the solutions of neutral differential equations were recently obtained by
Zahariev and Bainov [1], Philos [2], Ladas and Sficas [3]. Some applicable example
and basic result can be found in [4–6]. Grace discussed the Oscillation of nonlin-
ear functional differential equation with deviating arguments and neutral nonlinear
functional differential equation [7, 8]. However, very little is known for the case of
half-linear neutral differential equation with continuous deviating arguments.

In this paper we consider the following even order half-linear neutral differential
equations with distributed deviating arguments. By choose appropriate function
H(t; s);h(t; s) and ρ(s), we can present a series of explicit oscillation

{r(t)|[x(t) + c(t)x(t− τ)](n−1)|α−1[x(t) + c(t)x(t− τ)](n−1)}′+

+

∫ b

a

q(t, ξ)|x[g(t, ξ)]|α−1x[g(t, ξ)]dσ(ξ) = 0 , (1)
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where n is an even, α and τ are positive constants.
We assume throughout this paper that the following conditions hold:

(H1) r(t) ∈ C ′([t0,+∞), R), c(t) ∈ C([t0,+∞), R), q(t, ξ) ∈ C([t0,+∞)× [a, b], R);
(H2) g(t, ξ) ∈ C([t0,+∞) × [a, b], R), g(t, ξ) ≤ t, ξ ∈ [a, b]. g(t, ξ) is non-decreasing
with respect to t and ξ respectively, and lim

t→+∞
min
ξ∈[a,b]

{g(t, ξ)} = +∞;

(H3) σ(ξ) ∈ ([a, b], R) is non-decreasing, integral of Eq.(1) is a Stieltjes one.
We restrict our attention to a nontrivial solutions of Eq.(1), that is, to non-

constant solutions of existing on [T,∞] for T ≥ t0 and satisfying supt≥T |x(t)| > 0.
A nontrivial solution x(t) of Eq.(1) is called oscillatory if it has arbitra-rily large
zeros; otherwise it is said to be non-oscillatory. Eq.(1) is oscillatory if all of its
solutions are oscillatory.

To obtain oscillatory criteria of Eq.(1), we first need the following Lemmas.
Lemma 1.1 Let u(t) be a positive and n times differentiable function on R+. If
u(n)(t) is of constant sign and not identically zero on any ray [t1,+∞) for t1 > 0, then
there exists a tu ≥ t1 and an integer l(0 ≤ l ≤ n), with n+ l even for u(t)u(n)(t) ≥ 0
or n+ l odd for u(t)u(n)(t) ≤ 0; and for t ≥ tu,

u(t)u(k)(t) > 0, 0 ≤ k ≤ l; (−1)k−lu(t)u(k)(t) > 0, l ≤ k ≤ n.

Lemma 1.2 Suppose that the conditions of Lemma 1.1 are satisfied, and u(n−1)(t)
un(t) ≤ 0, t ≥ tu, then there exists a constant λ ∈ (0, 1) such that for sufficiently
large t, there exists a constant M > 0 satisfying |u′(λt)| ≥Mtn−2|u(n−1)(t)|.
Lemma 1.3 If X and Y are nonnegative, then Xλ−λXY λ−1+(λ−1)Y λ ≥ 0, λ > 1;
and Xλ−λXY λ−1− (1−λ)Y λ ≤ 0, 0 < λ < 1, where the equality holds if and only
if X = Y .

2. Main results

We can now prove the following theorems.
Theorem 2.1 Suppose that the following conditions hold:

(A1) 0 ≤ c(t) ≤ 1, q(t, ξ) ≥ 0;

(A2) r(t) ≥ 0,

∫ +∞

t1

(
1

r(s)

) 1
α

ds = +∞.

If d
dtg(t, a) exists, r(t) is non-decreasing and there exists a function ϕ(t) ∈

C ′([t0,+∞), (0,+∞)), ϕ(t) is non-decreasing with respect to t, such that∫ +∞

t1

[
ϕ(s)

∫ b

a

q(s, ξ){1− c[g(s, ξ)]}αdσ(ξ)−

−λr(s)ϕ′(s)
(

ϕ′(s)

Mϕ(s)[g(s, a)]n−2g′(s, a)

)α ]
ds = +∞ , (2)
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where λ = α+1
α , then all solutions of Eq.(1) are oscillatory.

Proof. Suppose to the contrary that there exists a non-oscillatory solution x(t) of
Eq.(1). Without loss of generality, we may suppose that x(t) is an eventually positive
solution. From (H3) and (H2), there exists a t1 ≥ t0 such that x(t) > 0, x(t− τ) > 0
and x[g(t, ξ)] > 0 for t ≥ t1, ξ ∈ [a, b]. Letting

z(t) = x(t) + c(t)x(t− τ). (3)

Then Eq.(1) can be written as[
r(t)|z(n−1)(t)|α−1z(n−1)(t)

]′
+

∫ b

a

q(t, ξ)x[g(t, ξ)]αdσ(ξ) = 0.

From the assumption of c(t) and q(t, ξ), we have z(t) ≥ x(t) > 0 and[
r(t)|z(n−1)(t)|α−1z(n−1)(t)

]′
≤ 0. (4)

We can prove z(n−1)(t) ≥ 0, t ≥ t1. In fact, suppose that z(n−1)(t) < 0, t ≥
t1, then r(t)|z(n−1)(t)|α−1z(n−1)(t) < 0. From (4) we have that r(t)|z(n−1)(t)
|α−1z(n−1)(t) is decreasing in t, and thus

r(t)|z(n−1)(t)|α−1z(n−1)(t) ≤ r(t2)|z(n−1)(t1)|α−1z(n−1)(t2), t ≥ t2 ≥ t1.

Which imply that∣∣∣z(n−1)(t)∣∣∣α−1z(n−1)(t) ≤ r(t2)|z(n−1)(t2)|α−1z(n−1)(t2)
r(t)

< 0

−z(n−1)(t) = |z(n−1)(t)| ≥
(
−r(t2)|z(n−1)(t2)|α−1z(n−1)(t2)

r(t)

) 1
α

=

(
r(t2)|z(n−1)(t2)|α

r(t)

) 1
α

.

So we have z(n−1)(t) ≤
(
r(t2)|z(n−1)(t2)|α

r(t)

) 1
α

. Integrating both sides of the above
inequality from t2 to t, we have

z(n−2)(t) ≤ z(n−2)(t2)−
(
r(t2)

∣∣∣z(n−1)(t2)∣∣∣α) 1
α

∫ t

t2

(
1

r(s)

) 1
α

ds .

Letting t→ +∞, from (A2) we have lim
t→+∞

z(n−2)(t) = −∞, and thus lim
t→+∞

z(t) =

−∞, which contradicts z(t) > 0. Thus z(n−1)(t) ≥ 0. Furthermore, from Lemma1.1,
there exists a t3 ≥ t2 and an odd number l, 0 ≤ l ≤ n − 1, for t ≥ t3, we have
z(i)(t) > 0, 0 ≤ i ≤ l; (−1)i−1z(i)(t) > 0, l ≤ i ≤ n − 1. By choosing i = 1, we have
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z′(t) > 0. From (3), Eq.(1) can be written as[
r(t)|z(n−1)(t)|α−1z(n−1)(t)

]′
+

+

∫ b

a

q(t, ξ){z[g(t, ξ)]− c[g(t, ξ)]x[g(t, ξ)− τ ]αdσ(ξ) = 0 .

Since that z(t) ≥ x(t) > 0, z′(t) ≥ 0, we have z[g(t, ξ)] ≥ z[g(t, ξ)−τ ] ≥ x[g(t, ξ)−
τ ], and thus we have[
r(t)|z(n−1)(t)|α−1z(n−1)(t)

]′
+

∫ b

a

q(t, ξ)z[g(t, ξ)]α{1− c[g(t, ξ)]}αdσ(ξ) ≤ 0 . (5)

Since that g(t, ξ) is non-decreasing in ξ, we have g(t, a) ≤ g(t, ξ), t > t0, ξ ∈ [a, b],
thus z[g(t, a)] ≤ z[g(t, ξ)]. Then (5) can be written as[

r(t)|z(n−1)(t)|α−1z(n−1)(t)
]′
+ z[g(t, a)]

∫ b

a

q(t, ξ){1− c[g(t, ξ)]αdσ(ξ) ≤ 0 , (6)

where t ≥ t1. Letting w(t) =
ϕ(t)r(t)|z(n−1)(t)|α−1z(n−1)(t)

z[g(t,a)]α , then w(t) ≥ 0, for t ≥ t1.

We have z(n−1)(t) ≥ 0, then w(t) can be written as w(t) = ϕ(t)r(t)[z(n−1)(t)]α

z[g(t,a)]α .

And thus

w′(t) =
ϕ′(t)

ϕ(t)
w(t) +

ϕ(t)[r(t)|z(n−1)(t)|α−1z(n−1)(t)]′

z[g(t, a)]α

− ϕ(t)r(t)|z(n−1)(t)|α−1z(n−1)(t)z′[g(t, a)]g′(t, a)αz[g(t, a)]α−1

z[g(t, a)]2α
.

From
[
r(t)|z(n−1)(t)|α−1z(n−1)(t)

]′ ≤ 0, z(n−1)(t) ≥ 0, and r′(t) ≥ 0 we conclude
that

r′(t)(z(n−1)(t))α + αr(t)(z(n−1)(t))α−1z(n)(t) ≤ 0 ,

which implies that z(n)(t) ≤ 0. According to Lemma 1.2, we obtain z′[g(t, a)] ≥
M [g(t, a)]n−2zn−1 (t) And thus

w′(t) ≤ ϕ′(t)

ϕ(t)
w(t)− ϕ(t)

∫ b

a

q(t, ξ){1− c[g(t, ξ)]}αdσ(ξ)

− αϕ(t)r(t)[z(n−1)(t)]α+1M [g(t, a)]n−2g′(t, a)

z[g(t, a)]α+1

= −ϕ(t)
∫ b

a

q(t, ξ){1− c[g(t, ξ)]}αdσ(ξ)

+
ϕ′(t)

ϕ(t)
w(t)− αM [g(t, a)]n−2g′(t, a)[r(t)ϕ(t)]

1
αw(t)

α+1
α .

(7)
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Taking

X =

(
αM [g(t, a)]n−2g′(t, a)

) α
α+1 w(t)

[r(t)ϕ(t)]
1

α+1

, λ =
α+ 1

α
,

Y =

(
α

α+ 1

)α [
ϕ′(t)

ϕ(t)
(r(t)ϕ(t))

1
α+1 (αM [g(t, a)]n−2g′(t, a))

−α
α+1

]α
.

According to Lemma 1.3, we obtain

ϕ′(t)

ϕ(t)
w(t)− αM [g(t, a)]n−2g′(t, a)[r(t)ϕ(t)]−

1
αw(t)

α+1
α

≤ λr(t)ϕ(t)

(
ϕ′(t)

ϕ(t)

)α+1 (
M [g(t, a)]n−2g′(t, a)

)−α
,

thus

w′(t) ≤ −ϕ(t)

[∫ b

a

q(t, ξ){1− c[g(t, ξ)]}αdσ(ξ)

− λr(t)ϕ′(t)

ϕ(t)

(
ϕ′(t)

M [g(t, a)]n−2g′(t, a)ϕ(t)

)α ]
.

(8)

Integrating both sides from t1 to t, we have

w(t) ≤ w(t1)−
∫ t

t1

[ϕ(s)

∫ b

a

q(s, ξ){1− c[g(s, ξ)]}αdσ(ξ)

− λr(s)ϕ′(s)
(

ϕ′(s)

M [g(s, a)]n−2g′(s, a)ϕ(s)

)α
]ds .

Letting t → +∞, from (2), we have lim
t→+∞

w(t) = −∞, which leads to a contra-

diction with w(t) > 0. This completes the proof of Theorem 2.1.
Theorem 2.2 Suppose that conditions (A1) and (A2) hold and r (t) is non-decreasing.
If there exists a d

dtg(t, a) and there exist function ϕ(t), ρ(s) ∈ C ′([t0,+∞), (0,+∞)),
ϕ(t) is non-decreasing with respect to t. Letting function H(t, s), h(t, s) ∈ C ′(D,R),
in which D = {(t, s)|t ≥ s ≥ t0}, such that
(H4) H(t, t) = 0, t ≥ t0;H(t, s) > 0, t > s ≥ t0;
(H5) H ′(t, s) ≥ 0, H ′s(t, s) ≤ 0;

(H6) −∂[H(t,s)ρ(s)]
∂s −H(t, s)ρ(s)ϕ

′(s)
ϕ(s) = h(t, s),

If

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

[H(t, s)ρ(s)ϕ(s)

∫ b

a

q(s, ξ){1− c[g(s, ξ)]}αdσ(ξ)

− βr(s)ϕ(s)|h(t, s)|α+1

(MH(t, s)ρ(s)[g(s, a)]n−2g′(s, a))α
]ds = +∞ , (9)
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where β =
(

1
α+1

)α+1

. Then all solutions of Eq.(1) are oscillatory.

3. The example

The following example illustrates our theory.
Example 2.1 Consider the 4-order equation

{|[x(t) + (1− e−t/α)x(t− τ)](3)|α−1[x(t) + (1− e−t/α)x(t− τ)](3)}′

+

∫ 0

−1
e2t+2ξ|x(t, ξ)|α−1x(t+ ξ)dξ = 0 .

(10)

Choosing ϕ(t) = t, then the conditions of (A1) , (A2) hold, and we have∫ +∞

t1

[
s

∫ 0

−1
e2s+2ξ{1− 1 + e−(s+ξ)/α}αdξ − λ 1

(Ms(s− 1)2)α

]
ds

=

∫ +∞

t1

[
s

∫ 0

−1
e2s+2ξe−(s+ξ)dξ − λ

(
1

M

)α
1

(s(s− 1)2)α

]
ds

=

∫ +∞

t1

sesds−
∫ +∞

t1

ses−1ds− λ

Mα

∫ +∞

t1

1

(s(s− 1)2)α
ds = +∞ .

Therefore, all solution of equation (10) are oscillatory by Theorem 2.1.
Example 2.2 Consider the high-order equation for n = m+ 2,m is an even.{∣∣∣∣[x(t) + (1− 1

t
)x(t− τ)](m+1)

∣∣∣∣α−1 [x(t) + (1− 1

t
)x(t− τ)](m+1)

}′

+

∫ 1

1
2

(t2ξ)α|x(tξ)|α−1x(tξ)dξ = 0 .

(11)

The conditions of (A1) , (A2) hold, taking ϕ (t) = t2, ρ (t) = 1
t2 , H (t, s) = (t−s)2,

for t ≥ s ≥ t0. Then the conditions of (H4), (H5) in Theorem 2.2 are satisfied, and
we have

h(t, s) = 2(t− s)/s2. Thus we conclude that

lim sup
t→+∞

1

(t− t0)

∫ t

t0

(t− s)2
∫ 1

1
2

(s2ξ)α
(

1

sξ

)α
dξds

= lim sup
t→+∞

1

2(t− t0)

∫ t

t0

sα(t− s)2ds

= lim sup
t→+∞

1

2(t− t0)

{
tα+3

(
1

α+ 1
+

1

α+ 3
− 2

α+ 2

)
−
(
t2tα+1

0

α+ 1
+

tα+3
0

α+ 3
+

2ttα+2
0

α+ 2

)}
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=+∞ .

On the other hand

∫ t

t0

βs2
[
2(t−s)
s2

]α+1

(
M(t− s)2 1

s2

(
s
2

)m 1
2

)α ds ≤ β2(m+2)α+1

Mα
× (t− t0)2−α

α− 2
×
(
t1−mα − t1−mα0

)
1−mα

.

When α > 2, we have that lim sup
n→+∞

∫ t
t0

βs2[ 2(t−s)
s2

]
α+1

(M(t−s)2 1
s2
( s2 )

m 1
2 )
α ds = 0. Therefore

lim sup
t→+∞

1

(t− t0)

∫ t

t0

(t− s)2 ∫ 1

1
2

(s2ξ)α
(

1

sξ

)α
dξ −

βs2
[
2(t−s)
s2

]α+1

(
M(t− s)2 1

s2

(
s
2

)m 1
2

)α
ds

= +∞ .

So that (9) is satisfied. Consequently, all solutions of equation (11) are oscillatory
by Theorem 2.2.
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